OPTIMAL BUS REASSIGNMENT CONSIDERING IN-VEHICLE OVERCROWDING

DR. KONSTANTINOS GKIOTSALITIS, ASSISTANT PROFESSOR

DISRUPTIONS IN PUBLIC TRANSPORT

Disruptions and consequences

- Disruptions are inevitable for public transport
- Sources:
- Weather
- Road works
- Technical failures
- Events, etc.
- Potential consequences:
- Direct: rescheduling, trip cancelations, delays, punctuality fines
- Indirect: unpleasant travel experience, revenue loss, company's image

DISRUPTIONS IN PUBLIC TRANSPORT

Twente network, the Netherlands

- Around 800 bus trips have been cancelled annually in the Twente bus network
- Primary/Secondary reasons:
- Delays
- Accidents
- Vehicle defects
- Shortage of drivers or vehicles
- Bus operation remains inflexible when facing such disruptions

WEATHER AND BUS RIDERSHIP

Impacts of extreme weather conditions

- Previous studies: weather influences travel mode choice behavior.
- In the Netherlands - frequent modal shifts between public transport (buses) and cycling
- Weather disruptions often result in crowded buses. In some cases the crowd exceeds the vehicles' maximum capacity

OPTIMAL BUS REASSIGNMENT

Current state-of-practice

- Run additional buses from the depot
- Disadvantages:
- Require reserved capacity (drivers and vehicles)
- Additional operating costs for the company

Alternative solution

- Bus reassignment from lowdemand lines to overcrowded lines
- Advantages:
- Efficient capacity allocation
- Low cost for operators

REASSIGNMENT FRAMEWORK

PROBLEM FORMULATION

Problem Formulation

Minimize waiting time of stranded passengers at bus stops under disrupted conditions

- Two-folded problem:
- More passengers will be served with reassignment to overcrowded lines
- Trip cancelation will cause discomfort for people whose bus got canceled.

$$
\begin{array}{r}
\min f(x, y)=\sum_{(i, j) \in L} \sum_{s \in S_{j}} \zeta_{s}^{j} \cdot w_{s}^{j} \cdot x_{i, j}+\sum_{(i, j) \in L} \sum_{s \in S_{j}} 3 \zeta_{s}^{j} \cdot w_{s}^{j} \cdot\left(1-x_{i, j}\right) \\
+\sum_{(i, j) \in L} \sum_{s \in S_{i}} 2 \vartheta_{s}^{i} \cdot w_{s}^{i} \cdot x_{i}, j+\sum_{(i, j) \in L} \sum_{k_{i} \in F_{i}} \sum_{s \in S_{k_{i}}} 2 \vartheta_{s}^{k_{i}} \cdot w_{s}^{k_{i}} \cdot y_{k_{i}, j}
\end{array}
$$

Subject to:

$$
\begin{gathered}
d_{i}+\delta_{i, j} \leq d_{f_{j}}, \forall(i, j) \in L \\
-\left(d_{i}+\delta_{i, j}\right) \leq-d_{p_{j}}, \forall(i, j) \in L \\
d_{i}+\delta_{i, j} \leq d_{j}+T, \forall(i, j) \in L \\
-\left(d_{i}+\delta_{i, j}\right) \leq-\left(d_{j}-T\right), \forall(i, j) \in L \\
\sum_{i \in L} x_{i, j} \leq 1, \forall i \in T^{r} \\
\sum_{j \in L} x_{i}, j \leq 1, \forall j \in T^{a} \\
d_{i}+\left(\delta_{i, j}+\lambda_{j}+\delta_{j, k_{i}}\right) x_{i, j}-M y_{k_{i}, j} \leq d_{k_{i}}, \forall(i, j) \in L, \forall k_{i} \in F_{i} \\
\sum_{k_{i} \in F_{i}} y_{k_{i}, j} \leq 2, \forall(i, j) \in L \\
x_{i, j} \leq y_{k_{i}, j}, \forall(i, j) \in L, \forall k_{i} \in F_{i} \\
\delta_{i, j} \leq \alpha, \forall(i, j) \in L \\
\delta_{j, k_{i}} \leq \alpha, \forall k_{i} \in F_{i} \\
x_{i, j} \in\{0,1\}, \forall(i, j) \in L \\
y_{k_{i}, j} \in\{0,1\}, \forall k_{i} \in F_{i}
\end{gathered}
$$

EXPERIMENT SETUP

Input data

Smart-card	- In-vehicle occupancy data - 2019 and September 2022
Timetable	- Departure, arrival, direction, vehicle number
Bus network	- Directed graph G=(N,A) - Nodes= stops, edges = segments
Deadhead time	- GoogleMaps API (distance matrix)
Weather	- KNMI (historical data) - Buienalarm (weather warning)

EXPERIMENT RESULTS

Overcrowding cases with bus reassignment

- Bus line 1: around 85 people boarded during the morning peak \rightarrow no more passengers picked up
- Bus line 3: max 4 people in the vehicle throughout the entire trip

So, the bus from line 3 can be assigned to line 1 without significant negative impacts on passengers in line 3

EXPERIMENT RESULTS

Overcrowding cases with bus reassignment

- Bus line 9: around 75 people boarded during the morning peak
- Bus line 1: max 7 people in the vehicle for a few segments
- So, the bus from line 1 can be assigned to line 9 without significant negative impacts on passengers in line 1

EXPERIMENT RESULTS

Overcrowding cases without bus reassignment

- Bus line 1: around 85 people boarded the bus in the afternoon \rightarrow no more passengers picked up
- Bus line 9: around 60 people boarded the bus

1 Passing Time
Overcrowded trip 2019-05-13

- In Both cases, no other trips could be canceled to reassign their buses.

CONCLUSIONS AND FUTURE RESEARCH

Efficient allocation of existing
1 capacity under disrupted conditions

Solve overcrowding issues, as
2 well as the shortage of bus drivers

Reduce reserved capacity to a minimum level

Test the model for other disruptions, e.g., large events, accidents, drivers' sickness

Implement the model in a
2 network with higher passenger demand

THANKS FOR YOUR ATTENTION!

Zakir Farahmand*, Konstantinos Gkiotsalitis**, Karst Geurs*
*Dept. of Civil Engineering and Management, Faculty of Engineering Technology, University of Twente, the Netherlands
Contact: z.h.farahmand@utwente.nl, k.t.geurs@utwente.nl
**Dept. of Transportation Planning and Engineering, National Technical University of Athens, Greece
Contact: kgkiotsalitis@civil.ntua.gr

